Improving Ecological Risk Assessments of Surface and Groundwater Exposures:

Realistic Monitoring Approaches that Reduce Uncertainty in an Efficient Manner

G. Allen Burton, Jr.
Institute for Environmental Quality
Wright State University
Dayton, OH 45435
(allen.burton@wright.edu)

Critical Weaknesses

- Establishing stressor causality
- Spatial and temporal variability
- Measuring exposure accurately
- Extrapolating effects
- Sampling/testing artifacts
- Appropriate references

Approach Comparisons

- Sediment Quality Guidelines (chemical specific)
- Lab toxicity (whole sediment assays)
- Habitat quality (QHEI)
- Benthic macroinvertebrate indices
- Indigenous species tissue residues
- In situ toxicity and bioaccumulation (multi-compartment)
- Toxicity identification evaluation (TIE) (lab & *in situ*)
- Food web modeling

Sites Evaluated (1998-2000)

- Clark Fork River, MT (Metals)
- Little Scioto River, OH (PAHs)
- Dicks Creek, OH (PCBs)
- Wolf Creek, OH (Varied)
- Mad River, OH (Varied)
- Lower Housatonic R., MA (PCBs)
- Sebasticook R., ME (Chlorobenzenes)

Tier 1: Stress Demonstration

Site Reconnaissance

Sample Design Issues

- · Bioaccumulation tissue design
- PAHs phototox testing

Period

• 1- 30 d

GW/SW interactions - piezometer design

Exposure

reference sites vs. stressor gradient

Compartment

- Water column
- Interface (sed/water)
- Surficial sediment
- Pore water

Event

- Low flow
- High flow
- Seasonal
- Diel

Effects

Measurement

Endpoints

Reproduction

Survival

Growth

Tissue

Species

- · H. azteca
- · D. magna
- · C. dubia
- · P. promelas
- · C. tentans
- L. variegatus
- Other

Weight of Evidence

- · Lab tox testing
- Chemistry + SQGs
- Indigenous biota structure/function indices, genetic profiling, fish DELTs, hyporheous)
- Habitat (QHEI)
- Food web modeling
- Retrospective studies

Physicochemical Profiles

Tier 2: Stressor Class Identification

- Physical stressors (flow, temperature, suspended solids)
- · Chemical stressor (PAHs, nonpolars, metals, ammonia) classes
- In Situ testing In situ Toxicity Identification Evaluations (TIE)
- Laboratory testing Toxicity Identification Evaluation Phase 1

Tier 3: Stressor & Source Confirmation

Sediment Lab Assays

- Bioaccumulation (28 day) using *Lumbriculus variegatus* (USEPA)
- Acute (10 day) survival and growth methods for *Hyalella azteca* and *Chironomus tentans*. Whole sediment exposures 2 to 7 d for *Daphnia, Ceriodaphnia, Pimephales, Hydra, Hexagenia*.

In Situ Chambers

Figure 1

Figure 2

Figure 3

In situ Chambers: water & surficial sediment exposures with flow deflectors

Peepers: Pore water chambers for chemical and toxicity testing

- Initially filled with culture water
- Inserted into sediments
- Equilibration ~ 2 days

In Situ Toxicity Test 100 90 Mean Survival (%) 80 **70** 60 **50** 40 30 WC AS SS 20 10 **PW** SC nda USGS C. tentans H. azteca 4d D. magna 4d P. promelas **2**d **2**d

How do organisms relate to hydrology?

Mini-Piezometer Installation & Reading

96-h Low Flow *In Situ* Exposure Maine Chlorobenzene Study

INTEGRATIVE CONCEPTUAL MODEL

Duncan 1999 Learned discourse

D. magna survival (± SD) following an in situ TIE exposure

Strengths/Limitations of Non-Traditional Assessment Methods

- Habitat: essential to life, dominant stressor
- GW/SW Flow: documents exposure, compartmentalize stress
- In situ Toxicity and Uptake: improved exposure, compartmentalize stress, minimize artifacts
- In situ TIE: improved exposure, minimize artifacts, sensitive

- Habitat: receptor specific, quantification
- GW/SW Flow:logistics
- In situ Toxicity and Uptake: logistics, reference site, acclimation, proper deployment
- *In situ* TIE: logistics, proper deployment, screening only

Essential Elements of an Accurate Risk Assessment

Document exposure vs. effects: time & space

(Low flow, high flow, GW/SW interactions, sediment)

Measure toxicity and uptake (2+ species, caged compartments)

Characterize & rank major stressor classes

Nonpolars, Ionizable organics, metals, phototoxicity, suspended solids, flow, habitat, nutrients. Compare to control treatments, reference sites and benchmarks.

Conduct biosurvey of most exposed populations

Benthic community: structure/function measures (define total stress exposure & role of habitat via survey, colonizations, and transplants)

Conclusions

- Tier 1, In situ-based conclusions often differ from traditional method conclusions
- Traditional methods predictive of harm, sometimes...
- In situ-based toxicity and bioaccumulation responses are more accurate than lab-based exposures, when properly used.